Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 49: 107736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781888

RESUMO

Acetate is regarded as a promising carbon feedstock in biological production owing to its possible derivation from C1 gases such as CO, CO2 and methane. To best use of acetate, comprehensive understanding of acetate metabolisms from genes and enzymes to pathways and regulations is needed. This review aims to provide an overview on the potential of acetate as carbon feedstock for industrial biotechnology. Biochemical, microbial and biotechnological aspects of acetate metabolism are described. Especially, the current state-of-the art in the production of value-added chemicals from acetate is summarized. Challenges and future perspectives are also provided.


Assuntos
Acetatos , Biotecnologia , Carbono , Metano
2.
Bioresour Technol ; 329: 124867, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33640696

RESUMO

Pseudomonas asiatica C1, which could grow on glucose and aerobically synthesize coenzyme B12, was isolated and developed as a microbial cell factory for the production of 3-hydroxypropionic acid (3-HP) from glycerol. Three heterologous enzymes, glycerol dehydratase (GDHt), GDHt reactivase (GdrAB) and aldehyde dehydrogenase (ALDH), constituting the 3-HP synthesis pathway, were introduced, and three putative dehydrogenases, responsible for 3-HP degradation, were disrupted. In addition, the transcriptional repressor glpR and the glycerol kinase glpK were removed to increase glycerol import while eliminating the catabolic use of glycerol. Furthermore, the global regulatory protein encoded by crc and several putative oxidoreductases (PDORs) were disrupted. One resulting strain, when grown on glucose, could produce 3-HP at ~ 700 mM in 48 h in a fed-batch bioreactor experiment, with the molar yield > 0.99 on glycerol without much by-products. This study demonstrates that P. asiatica C1 is a promising host for production of 3-HP from glycerol.


Assuntos
Glicerol , Pseudomonas , Ácido Láctico/análogos & derivados
3.
Bioresour Technol ; 320(Pt A): 124362, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33186840

RESUMO

Acetate can be used as carbon feedstock for the production of 3-hydroxypropionic acid (3-HP), but the production level was low due to inefficient cell growth on acetate. To better utilize acetate, a two-stage strategy, whereby glucose is used for cell growth and acetate for 3-HP formation, was attempted. Dissected malonyl-CoA reductase of Chloroflexus aurantiacus, alone or along with acetyl-CoA carboxylase and/or transhydrogenase, was overexpressed, and by-products formation pathway, glyoxylate shunt (GS) and gluconeogenesis were modified. When GS or gluconeogenesis was disrupted, cell growth on glucose was not hampered, while on acetate it was completely abolished. Consequently, 3-HP production, at production stage, were low, though 3-HP yield on acetate was increased, especially in the case of aceA deletion. In two-stage bioreactor, strain with upregulated GS produced 7.3 g/L 3-HP with yield of 0.26 mol/mol acetate. This study suggests that two-stage cultivation is a good strategy for 3-HP production from acetate.


Assuntos
Escherichia coli , Glucose , Acetatos , Chloroflexus , Escherichia coli/genética , Ácido Láctico/análogos & derivados , Engenharia Metabólica
4.
Metab Eng ; 62: 116-125, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32898717

RESUMO

1,3-Propanediol (1,3-PDO) is an important platform chemical which has a wide application in food, cosmetics, pharmaceutical and textile industries. Its biological production using recombinant Escherichia coli with glucose as carbon source has been commercialized by DuPont, but E. coli cannot synthesize coenzyme B12 which is an essential and expensive cofactor of glycerol dehydratase, a core enzyme in 1,3-PDO biosynthesis. This study aims to develop a more economical microbial cell factory using Klebsiella pneumoniae J2B which can naturally synthesize coenzyme B12. To this end, the heterologous pathway for the production of glycerol from dihydroxyacetone-3-phosphate (DHAP), a glycolytic intermediate, was introduced to J2B and, afterwards, the strain was extensively modified for carbon and energy metabolisms including: (i) removal of carbon catabolite repression, (ii) blockage of glycerol export across the cell membrane, (iii) improvement of NADH regeneration/availability, (iv) modification of TCA cycle and electron transport chain, (v) overexpression of 1,3-PDO module enzyme, and (vi) overexpression of glucose transporter. A total of 33 genes were modified and/or overexpressed, and one resulting strain could produce 814 mM (62 g/L) of 1,3-PDO with the yield of 1.27 mol/mol glucose in fed-batch bioreactor culture with a limited supplementation of coenzyme B12 at 4 µM, which is ~10 fold less than that employed by DuPont. This study highlights the importance of balanced use of glucose in the production of carbon backbone of the target chemical (1,3-PDO) and regeneration of reducing power (NADH). This study also suggests that K. pneumoniae J2B is a promising host for the production of 1,3-PDO from glucose.


Assuntos
Glucose , Klebsiella pneumoniae , Escherichia coli/genética , Glicerol , Klebsiella pneumoniae/genética , Propilenoglicóis
5.
Bioresour Technol ; 307: 123194, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234590

RESUMO

The use of acetate as carbon feedstock can enhance sustainability and economics of the current bio-productions. This study explored the potential of acetate for the production of 3-hydroxypropionic acid by engineered Pseudomonas denitrificans. Heterologous mcr (encoding malonyl-CoA reductase) from Chloroflexus aurantiacus and endogenous accABCD (encoding acetyl-CoA carboxylase) were overexpressed in P. denitrificans. Carbon flux to 3-HP synthesis at the malonyl-CoA node was promoted by suppressing fatty acid synthesis through addition of cerulenin or deletion of fabF gene. In addition, stimulation of glyoxylate shunt and/or TCA cycle were attempted. Recombinant P. denitrificans overexpressing mcr and accABCD produced 19.3 mM 3-HP with cerulenin addition, and 14.2 mM with fabF deletion, respectively. Furthermore, the non-growing cells devoid of fabF could continuously produce 3-HP up to 40.4 mM without losing its production activity for 22 h. This study demonstrates that acetate is a good substrate for 3-HP production by recombinant P. denitrificans.


Assuntos
Ácido Láctico , Pseudomonas , Acetatos , Ácido Láctico/análogos & derivados , Malonil Coenzima A
6.
Bioresour Technol ; 292: 121933, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31404755

RESUMO

Bio-production of 1,3-propanediol (1,3-PDO) from glycerol was studied using Pseudomonas denitrificans as host, which aerobically synthesizes coenzyme B12, an essential cofactor of glycerol dehydratase (GDHt). P. denitrificans was transformed with the 1,3-PDO synthesis pathway composed of GDHt and 1,3-PDO oxidoreductase (PDOR), and its putative 3-hydroxypropionaldehyde (3-HPA) dehydrogenase(s), leading to the production of 3-hydroxypropioninc acid form the intermediary 3-HPA, was identified and deleted. In addition, to improve the availability of NADH for PDOR, oxidation of NADH in the electron transport chain was disturbed by deletion of the nuo operon and/or ndh gene. Finally, acetate formation pathway was eliminated. One resulting strain could produce 68.95 mM 1,3-PDO with the yield of 0.92 mol 1,3-PDO/mol glycerol on flask scale and 440 mM with the yield of 0.89 mol 1,3-PDO/mol glycerol in a fed-batch bioreactor experiment. This study demonstrates that P. denitrificans is a promising recombinant host for the production of 1,3-PDO from glycerol.


Assuntos
Glicerol , Engenharia Metabólica , Propilenoglicóis , Pseudomonas
7.
Bioresour Technol ; 245(Pt B): 1542-1550, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28549809

RESUMO

The production of 1,3-propanediol (1,3-PDO) from glucose was investigated using Klebsiella pneumoniae J2B, which converts glycerol to 1,3-PDO and synthesize an essential coenzyme B12. In order to connect the glycolytic pathway with the pathway of 1,3-PDO synthesis from glycerol, i.e., to directly produce diol from glucose, glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase from Saccharomyces cerevisiae were overexpressed. Additionally, the effect of expression levels and the use of isoforms of these two enzymes on glycerol and 1,3-PDO production were studied. Furthermore, to prevent loss of produced glycerol, the glycerol oxidation pathways were disrupted. Finally, the conversion rate of glycerol to 1,3-PDO was increased via homologous overexpression of glycerol dehydratase and 1,3-PDO oxidoreductase. The resultant strain successfully produced 1,3-PDO from glucose at a yield of 0.27mol/mol along with glycerol at 0.52mol/mol. Improvement of the engineered K. pneumoniae J2B to further increase conversion of glycerol to 1,3-PDO is discussed.


Assuntos
Glucose/metabolismo , Klebsiella pneumoniae , Engenharia Metabólica , Propilenoglicóis , Fermentação , Glicerol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...